Preview

Herald of Siberian Institute of Business and Information Technologies

Advanced search

RELATIONSHIP BETWEEN PHYSICAL AND MATHEMATICAL ASPECTS DURING STUDYING THE TOPIC “OSCILLATIONS” AT A TECHNICAL UNIVERSITY

https://doi.org/10.24411/2225-8264-2020-10016

Abstract

The article, mainly, is dedicated to the discussion of a relation between physical and mathematical aspects of teaching the free, damping, and induced oscillations in technical university to the rising bachelors of engineering and technology. Firs of all, we propose to teach this topic using the notions of the generalized coordinate, generalized momentum, generalized mass, and generalized stiffness. This allows to unify the studying of physically different types of oscillation (mechanical, electrical, etc.). Second, we emphasize that mathematically these oscillating processes are described by linear differential equations (often non-homogeneous ones) which might be solved by an effective algorithm presented in several mathematical textbooks (this algorithm sometimes is called as the Lagrange method, sometimes it is mentioned as the Duhamel principle). We demonstrate that, in standard general physics textbooks, during the presentation of the topic “Oscillations”, this algorithm is not addressed. As a result, as it usually happens in universities, a gap appears between the physics and mathematics which reduces the efficiency of both subjects studying. While teaching the mathematics in a technical university, it is important to demonstrate for which physical problem the studying material might be applied. In the article, a new approach for teaching the topic “Oscillations” is proposed; it includes the indicated effective mathematical algorithm (the Lagrange method)

About the Authors

I. I. Gontchar
Omsk State Transport University
Russian Federation


M. V. Chushnyakova
Omsk State Technical University
Russian Federation


S. N. Krokhin
Omsk State Transport University
Russian Federation


References

1. Астахов, А. В. Курс физики. Том 1. Механика. Кинетическая теория материи [Текст]/ А.В. Астахов, Ю.М. Широков. - М.: Наука, 1977. - 388 с

2. Иродов, И. Е. Механика. Основные законы [Текст] - М.: БИНОМ. Лаборатория знаний, 2014. - 309 с

3. Минпросвещения России: Национальный проект «Образование» [Электронный ресурс]. - Режим доступа: URL: https://edu.gov.ru/national-project/. Дата обращения (31.03.2020), свободный

4. Савельев, И. В. Курс общей физики: Учеб. пособие для втузов в 3 т. Т. 1. Механика, колебания и волны, молекулярная физика [Текст] - М.: Наука, 1970. - 508 с

5. Сивухин, Д. В. Общий курс физики. Учебное пособие в 5 т. Том 1. Механика [Текст] - М.: Физматлит, 2014. - 560 с

6. Смирнов, В. И. Курс высшей математики. Учебник для вузов в 5 томах. Том II [Текст] - СанктПетербург: БХВ-Петербург, 2008. - 848 с


Review

For citations:


Gontchar I.I., Chushnyakova M.V., Krokhin S.N. RELATIONSHIP BETWEEN PHYSICAL AND MATHEMATICAL ASPECTS DURING STUDYING THE TOPIC “OSCILLATIONS” AT A TECHNICAL UNIVERSITY. Herald of Siberian Institute of Business and Information Technologies. 2020;(2):23-29. (In Russ.) https://doi.org/10.24411/2225-8264-2020-10016

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-8264 (Print)