APPLICATION OF THE STOCHASTIC HARMONIC OSCILLATOR MODEL IN TEACHING THE SECTION "FLUCTUATIONS" IN A TECHNICAL UNIVERSITY
https://doi.org/10.24412/2225-8264-2022-1-04-10
Abstract
Nanotechnologies represent one of the priorities of the progress in all fields of the modern science and technology. The thermal fluctuations play a significant role for the nanosized objects. However, in modern textbooks and educational standards, studying thermal fluctuations have not received enough attention. The purpose of the present paper is to fill in this lacune partially. The presentation of the material is focused on the stochastic harmonic oscillator model, i.e. on the vibrational system experiencing the action of the dissipative and stochastic (random) forces. In the paper, we present several examples of specific modern physical experiments and phenomena requiring the above model for their description. The Chandrasekhar method for constructing the probability density depending simultaneously upon two fluctuating variables (being for our problem the generalized coordinate and velocity) is enunciated. This method is not widely known. We also enunciate the Lagrange method of constants variation; this method forms the basis for obtaining the solution of the differential equation describing the harmonic oscillator underwent stochastic forces. Using this method, we obtain the specific formulas designed to describe the time dependence of the variance of the generalized oscillator coordinate, the variance of its generalized velocity, and the correlator of these two as well as the mean values of the generalized coordinate and velocity. These formulas are valid for the case of the damped oscillations when the oscillator eigen frequency exceeds the damping coefficient. The resulting formulas are analyzed for the limiting cases. In particular, we show that at small values of time the variance of the stochastic harmonic oscillator velocity evolves with time in the same way as the variance of the coordinate for free Brownian particle.
About the Authors
I. I. GontcharRussian Federation
Igor I. Gontchar, Physics and Chemistry Department
Omsk
M. V. Chushnyakova
Russian Federation
Maria V. Chushnyakova, Physics Department
Omsk
E. V. Kulik
Russian Federation
Ekaterina V. Kulik, Physics Department
Omsk
References
1. Anselm, A. I. Osnovy statisticheskoy fiziki i termodinamiki [Foundations of statistical physics and thermodynamics]. Moscow, 1973, 337 p.
2. Astakhov, A. V. Kurs fiziki. Tom 1. Mekhanika. Kineticheskaya teoriya materii [Physics course. Volume 1. Mechanics. Kinetic theory of matter]. Moscow, 1977, 384 p.
3. Vlasov, K. Nobelevskaya premiya po fizike — 2021 [Nobel Prize in Physics – 2021]. – // Elementy. Novosti nauki. — 2021. — 11.10. — URL: https://elementy.ru/novosti_nauki/433877/Nobelevskaya_premiya_po_fizike_2021,svobodnyy. — Tekst : elektronnyj.
4. Gonchar, I. I. Iyerarkhiya opredeleniy fizicheskikh velichin i osnovnyye polozheniya molekulyarno - kineticheskoy teorii [Hierarchy of definitions of physical quantities and basic provisions of molecular - kinetic theory] / I. I. Gonchar, M. V. Chushnyakova. — Tekst : neposredstvennyy // AETERNA Vzaimodeystviye nauki i obshchestva: problemy i perspektivy. — 2016. — 2 (34). — P. 91-94.
5. Gontchar I. I. Osnovnye polozheniya molekulyarno-kineticheskoj teorii kak otpravnaya tochka v izuchenii fiziki [The main provisions of the molecular-kinetic theory as a starting point in the study of physics] / I. I. Gontchar, M. V. Chushnyakova, S. N. Krokhin. — Tekst : neposredstvennyj // Vestnik Omskogo universiteta. — 2017, — 2(84). — S. 36-406.
6. Гончар, И. И. Особенности преподавания физики в российских технических вузах первой четверти ХХI века / И. И. Гончар, М. В. Чушнякова, Т. А. Аронова. — Текст : непосредственный // Вестник Омского государственного педагогического университета. Гуманитарные исследования. — 2019. — 1 (22). — C. 97-99.
7. Gontchar I. I. Sootnoshenie mezhdu fizicheskimi i matematicheskimi aspektami pri izuchenii temy «Kolebaniya» v tekhnicheskom vuze [The relationship between physical and mathematical aspects in the study of the topic «Oscillations» in a technical university] / I. I. Gontchar, M. V. Chushnyakova, S. N. Krokhin. — Tekst : neposredstvennyj // Vestnik Sibirskogo instituta biznesa i informacionnyh tekhnologij. — 2020. — 2 (34). — S. 23-29.
8. Gonchar, I.I. Uchebnoye posobiye. «Kratkiy kurs teorii fizicheskikh poley» [Tutorial. "A short course in the theory of physical fields"] / I.I. Gonchar, S.N. Krokhin. — Omsk: Omskiy gosudarstvennyy universitet putey soobshcheniya, 2016.— 70 s. — Tekst : neposredstvennyy.
9. Irodov I. E. Mekhanika. Osnovniye zakony [Mechanics. Principal laws]. – Moscow, BINOM. Laboratoriya znaniy, 2014. – 309 p.
10. Korn, G. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Handbook of mathematics for scientists and engineers] / G. Korn, T. Korn. — Moskva: Nauka, 1973.— 582 s. — Tekst : neposredstvennyy.
11. Rossiyskaya Federatsiya. Prezident. Poslaniye Prezidenta RF Federal'nomu Sobraniyu ot 26.04.2007: "Poslaniye Prezidenta Rossii Vladimira Putina Federal'nomu Sobraniyu RF" [The message of the President of the Russian Federation to the Federal Assembly of 26.04.2007: "The message of the President of Russia Vladimir Putin to the Federal Assembly of the Russian Federation"] / Rossiyskaya Federatsiya. Prezident (2004 — 2008; V. V. Putin). — Tekst: elektronnyy // Konsul'tantPlyus. VersiyaProf. — Moskva, 2007. — 1 CD-ROM.
12. Sivukhin D. V. Obschiy kurs fiziki. Uchebnoe posobie v 5 t. Tom 1. Mekhanika [General course of physics: Textbook in 5 books. Book 1. Mechanics]. – Moscow, Fizmatlit, 2014. – 560 p.
13. Smirnov V. I. Kurs vjsshey matematiki: Uchebnik dlya vuzov v 5 t. Tom II [Course of the calculus: Textbook for universities in 5 books. Book II]. – Sant-Petersburg, BHV-Peterburh, 2008. – 848 p.
14. Chandrasekhar, S. Stohastic problems in physics and astronomy / S Chandrasekhar. — Tekst : neposredstvennyy // Review of Modern Physics. — 1943. — 15(1).
15. Direct measurement of Kramers turnover with a levitated nanoparticle / L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago. — Tekst : neposredstvennyy // Nature Nanotechnology. — 2017. — 12. — P. 1130-1133.
16. Dudko, O.K. Intrinsic Rates and Activation Free Energies from Single-Molecule Pulling Experiments/ O.K. Dudko, G. Hammer, A. Szabo. — Tekst : neposredstvennyy // Physical review letters. — 2006. — 96. — P. 1-4.
17. Hammer, G. Kinetics from Nonequilibrium Single-Molecule Pulling Experiments / G. Hammer, A. Szabo. — Tekst : neposredstvennyy // Biophysical Journal. — 2003. — 85. — P. 5-15.
18. Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions / H.A. Kramers. — Tekst : neposredstvennyy // Physica. — 1940. — 7. — P. 284-304.
19. Melnikov, V.I. The Kramers problem: fifty years of development / V.I. Melnikov. — Tekst : neposredstvennyy // Physics Reports. — 1991. — 209(1).
Review
For citations:
Gontchar I.I., Chushnyakova M.V., Kulik E.V. APPLICATION OF THE STOCHASTIC HARMONIC OSCILLATOR MODEL IN TEACHING THE SECTION "FLUCTUATIONS" IN A TECHNICAL UNIVERSITY. Herald of Siberian Institute of Business and Information Technologies. 2022;11(1):4-10. (In Russ.) https://doi.org/10.24412/2225-8264-2022-1-04-10